

ANANDALAYA PERIODIC TEST - 1 Class: XI

Subject : Mathematics (041) Date : 19–07–2024

M.M: 40 Time: 1 Hour 30 min

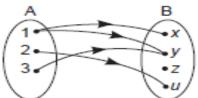
(1)

General Instructions:

- 1. The question paper consists of 22 questions divided into 3 sections A, B and C.
- 2. All questions are compulsory.
- 3. Section A comprises of 10 questions of 1 mark each.
- 4. Section B comprises of 6 questions of 2 marks each. Internal choice has been provided in two questions.
- 5. Section C comprises of 6 questions of 3 marks each. Internal choice has been provided in two questions.

SECTION - A

- 2. Let $A = \{2\}, B = \{3, 4, 5\}$ and $C = \{5, 6\}$ then number of elements in $A \times (B - C) =$ _____ (1)(B) 1 (C) (A) 2 (D) 4 3
- 3. If $A = \{1, \{2, 3\}\}$ which of the following is not true? (1)(A) $\{2,3\} \in A$ (B) $1 \in A$ (C) $\{2,3\} \subset A$ (D) $\{1\} \subset A$
- Given relation $R = \{(5, 6), (7, 9), (5, 9), (5, 10)\}$. Then range of the relation contains______ elements. 4. (1)(A) 2(B) 3 (C) 4 (D) 0
- If $tan\theta = 3$ and θ lies in the third quadrant, then the value of $\sin \theta =$ _____ 5. (1)(B) $\frac{3}{\sqrt{10}}$ (C) $\frac{\sqrt{10}}{3}$ (D) (A)

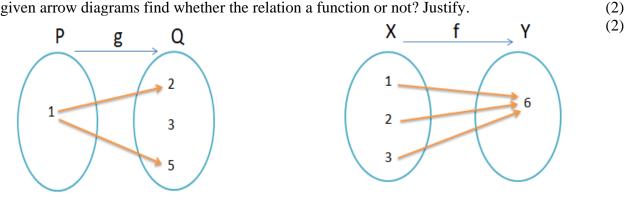

The value of $sin (45^\circ + \theta) - cos (45^\circ - \theta)$ is _____ (A) 1 (B) 0 (C) $\frac{1}{2}$ 6. (1)(D)

- Find the domain of the following function given by : $f(x) = \frac{1}{\sqrt{x + |x|}}$. (A) $(-\infty, \infty)$ (B) $(0, \infty)$ (C) $(-\infty, 0)$ (D) (1)7. [0,∞)
- 8. (1)

The value of $\tan 20^{\circ} \tan 45^{\circ} \tan 70^{\circ}$ is equal to _____ (A) 1 (B) -1 (C) $\frac{1}{2}$ (D) Range of the function $f(x) = \frac{x+4}{|x+4|}$ is _____ (A) {4,-4} (B) {-4} (C) {-1,1} (D) 9. R

In the following Q.10, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices.

- (A) Both A and R are true and R is the correct explanation of A.
- (B) Both A and R are true but R is not the correct explanation of A.
- (C) A is true but R is false.
- (D) A is false but R is true.
- 10 Assertion (A): In the given arrow diagram domain of relation from set A to set B is set A. (1)



Reason (R): First entries of ordered pairs in given relation are its domain.

11. Find the domain and range of the real function
$$f(x) = x^2 + 2$$
. (2)
12. If $A = \{x : x \in W, x < 2\}, B = \{x : x \in N, 1 < x < 5\}, C = \{3, 5\}, (2)$
find (i) $A \times (B \cap C)$ (ii) $A \times (B \cup C)$
OR
Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, A = \{1, 2, 3, 4\}, B = \{2, 4, 6, 8\}$ and $C = \{3, 4, 5, 6\}.$
Find (i) A' (ii) $(A \cap C)'$ (iii) C' (iv) $(B - C)'$
13. Let $f : R \to R$ be given by $f(x) = x^2 + 3$;
Find (i) $\{x : f(x) = 28\}$
(ii) The pre-images of 39 and 2 under 'f'.
14. If $\tan A = \frac{1}{2}$ and $\tan B = \frac{1}{3}$, then find the value of $\tan(2A + B)$.
OR
Show that $\sin \alpha + \sin \left(\alpha + \frac{2\pi}{3}\right) + \sin \left(\alpha + \frac{4\pi}{3}\right) = 0$

SECTION – B

15. From the given arrow diagrams find whether the relation a function or not? Justify.

(2)

(3)

16. Prove that: sin x + sin 3x + sin 5x + sin 7x = 4 cos x cos 2x sin 4x.

SECTION - C

 $A = \{2, 5, 9, 10\},\$ 17. If $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\},\$ $B = \{1, 4, 7, 9\}$ then verify that: (3)

i) $(A \cup B)' = A' \cap B'$ ii) $(A \cap B)' = A' \cup B'$.

OR

If $A = \{x: x \in Z \text{ and } x^2 \le 16\}, B = \{x: x \in N \text{ and } 2x + 3 \le 13\}, C = \{x: x \in W \text{ and } 0 \le x < \frac{7}{2}\}$ verify $A - (B - C) = (A - B) \cup (A \cap C)$.

^{18.} Prove that :
$$\frac{tan5\theta + tan3\theta}{tan5\theta - tan3\theta} = 4\cos2\theta\cos4\theta$$
 (3)

- 19. Find domain and range of $f(x) = \frac{x-2}{x-1}$.
- Let $f = \{(1, 1), (2, 3), (0, -1), (-1, -3)\}$ be a function from Z to Z defined by f(x) = ax + b, for 20. (3)some integers a and b. Determine a and b.

^{21.} Find the value of
$$sin^{2}\left(\frac{3\pi}{4}\right) + 2cos\left(\frac{3\pi}{4}\right) + \frac{1}{2}tan\left(\frac{3\pi}{4}\right).$$
 (3)
OR
Show that $\frac{cos^{3}\theta - cos3\theta}{cos\theta} + \frac{sin^{3}\theta + sin3\theta}{sin\theta} = 3.$

Find the value of $sin\left(\frac{x}{2}\right)$ and $cos\left(\frac{x}{2}\right)$ if $tanx = -\frac{4}{3}$, where x lies in the 2nd quadrant. 22. (3)